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Recent scalability efforts like node.js made event loops
popular. But event loops are often also useful (and used)
for other kinds of software.

This paper introduces event loops and takes a look at
their advantages and disadvantages. What they can pro-
vide and what it costs to use them. It also explores mul-
tithreaded event loops, especially multithreading one
event loop with epoll.

In the end however multithreading one event loop
nullifies many advantages of event loops. So they are
best used in a single thread with explicit background
threads.

Simple programs only have to react to input from one
source. A terminal for example reads a command, exe-
cutes it and then waits for the next command. For this
kind of question and answer interaction a simple read()

[1] or scanf() [2] will suffice. If no data is available the
operating system will automatically block the program.
And as soon as new data arrives the program will be
woken up and can resume its work.

More complex programs however need to react to in-
put from multiple sources. Will the user click the "ac-
cept" button or close the window? Is new data available
to be read from a network connection? Did a background
task just complete?

Most applications usually have to take care of many
such things. But they don't know in which order these
events will happen. They don't know from which source
(window, timer, network connection, etc.) the next
event will come. So they can't wait for a single "next
thing" like scanf() does by waiting only for new data
from the standard input. Instead applications have to
be ready for events from many different sources and
process them as they are coming in.

Operating systems have long since provided functions
for that task: For example select() [3] or poll() [4] on
Linux and WaitForMultipleObjects() [5] on Windows.
With them an application can wait for the next event
from any of the supplied sources. By calling these func-
tions in a simple loop an application then can react to all
events:

while( wait_for_event(sources, &event) )
process_event(event);

The loop in this pseudocode will wait for the next
event and process it when it arrives. Then it starts over
until there is no next event (e.g. the window was de-
stroyed or a shutdown signal received). Quite literally a
loop that processes events, hence it's called an "event
loop".

Event loops have several advantages which made them
popular for many applications.

Do many things "at once"
Event loops allow an single threaded application to ap-
pear like it's reacting to many different things at the
same time.

A GUI application can redraw it's window when need-
ed, update a progress bar and can react when it's win-
dow is closed. A server can accept new connections and
coordinate the data flow from and to many already es-
tablished connections. This is achieved by reacting to
events so quickly that the user doesn't notice that the
application does only one thing at a time. This is also
called "event multiplexing".

Very efficient
Event loops handle large number of events very effi-
ciently. APIs like epoll [6] and I/O Completion Ports [7]
have little overhead and can be used to monitor thou-
sands of network connections for events.
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Network servers are usually I/O heavy applications.
Often there is little CPU intensive work to be done but
there are very many network connections that have to
be monitored and processed. Servers like nginx [8] and
Apache 2 (the event MPM [9]) use event loops to op-
timize their performance and scalability [10]. The
throughput oriented node.js [11] even uses the event
loop as its primary programing paradigm.

No deadlocks or race conditions
Event loops don't need threads. Thus a single threaded
event loop avoids the overhead, difficulties and errors of
locking and thread synchronization.

This allows to write code that coordinates a program
in a straight forward way. Event handlers can modify
arbitrary complex structures like elements in the DOM
tree of web browsers. No need to think about locks,
deadlocks or lost updates. This enormously simplifies
any coordination code.

Also programmers usually don't notice it all these ad-
vantages have put event loops into much of todays soft-
ware. Most graphical user interfaces (GUIs) are event
driven. You write event handlers and don't care how it
gets called. GUIs then use event loops to call the event
handlers at the right time. The Win32 GUI, GTK+ and
many others work this way. Even websites are no dif-
ferent. Many server applications use event loops. Either
for performance and scalability reasons or because of
the simplicity event loops bring with them when many
clients need to interact with one another.

As with everything in live nothing is perfect. And nei-
ther are event loops. Using event loops comes with some
major drawbacks.

No long running event handlers
Event loops only work well when all event handlers are
quick enough.

While an application is busy processing an event new
events are queued up. The application doesn't respond
to them immediately. In other words: During event pro-
cessing the application is unresponsive.

When an event handler runs for one second the user
will usually notice that other stuff isn't taken care of
(e.g. redrawing of the GUI). In the worst case an event

handler runs for several seconds and the user or system
might think that the application just crashed. And some
users will simply kill the application.

In practice there are two sources for long running
event handlers:

• Functions that block and wait for data.
• Expensive calculations that actually take a long

time to complete.

Avoid blocking calls in event handlers
Blocking functions will also block the entire event loop.
Those are functions that wait for data or events by
blocking the current thread until the data arrives (like
scanf()).

Waiting for data (or events) is what the event loop is
for. When a function within an event handler waits until
something is supposed to happen our entire event loop
doesn't continue. While that function keeps our thread
blocked the event loop can't process new events. Our ap-
plication is unresponsive.

So everything that might block the current thread to
wait for data should instead use the event loop. Unfor-
tunately blocking function calls can hide in many places.
Especially if libraries are used.

The most obvious candidates are network connec-
tions. Establishing a network connection and reading or
writing from it can take time. In case of internet connec-
tions or slow servers quite a long time. For example if
you have a function that connects to a server and checks
for updates you'll have to rewrite it to use the event
loop. Otherwise it will block the entire application until
it got its answer from the server.

Even working with files can take time and block a
thread: Maybe the notebooks hard drive was in energy
saving mode and needs to spin up again. Even if the drive
is ready it can take the operating system quite some time
to fetch or write data. All time during which our event
loop could process new events.

Actually for local file systems this is often good
enough and users learned to live with small application
"hiccups" or "hangs". But network file systems which
are common in enterprise environments can drastically
increase the time of file I/O. This can make an applica-
tion quite unresponsive or simply unproductive to work
with.

Disadvantages3.
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Integration of APIs into an event loop
It can be rather difficult up to impossible to properly in-
tegrate all blocking function calls into an event loop.

On Linux non-blocking I/O and event monitoring
works well for almost all operating system "objects":
sockets, pipes, timers, signals, Video4Linux 2 devices
(webcams), etc. Even an epoll event loop itself can be
monitored from another event loop. But plain disk files
don't support non-blocking operations. And monitoring
them with poll() or epoll() doesn't work because disk
files are always "ready" for read() or write() but can
still force the thread to sleep [12].

On windows many HANDLEs can be waited upon. With
MsgWaitForMultipleObjects() an application can wait
for HANDLEs and window messages at the same time. But
again for file I/O there are many quirks and exceptions
to this. Sometimes asynchronous calls can be silently
converted to synchronous ones and block the thread [13]
[14].

Event loop libraries like libeio [15] and libuv [16] (used
by node.js) internally use thread pools to emulate a non-
blocking interface to these functions.

Unfortunately some APIs simply don't play well with
event loops. For example OpenGL provides it's own syn-
chronization primitives (GL_ARB_sync [17]). But at the
time of writing (November 2014) these sync primitives
can't be converted to HANDLEs or file descriptors which
could be used in an event loop. This functionality was
proposed in the spec around 2006 [18] but never fol-
lowed up upon or implemented. So again an extra thread
has to be used to isolate the event loop from the blocking
function calls of OpenGL. But this can have other im-
plications since especially on Windows a lot of implicit
state is tied to the thread instead of the process (e.g. in-
put queues of windows).

While event loops suffer from this drawback it's not
strictly related only to them. Rather many APIs and li-
braries don't expose proper event handling primitives.
A problem also encountered when coordinating multiple
threads. Making it hard to focus on the causality of the
programs execution and requiring additional layers of
coordination. Even outside of event loops this leads to
unnecessary spawning of new threads, not to utilize
multiple cores for number crunching but to work
around blocking function calls.

Avoid CPU intensive work in the event loop
CPU heavy event handlers can also keep the event loop
busy for a long time. They execute expensive calcula-
tions that simply take up a lot of CPU time to finish. Such
code can also hide in a lot of places. Especially since most
libraries don't mention how expensive a function can be.

For example loading and processing images is fast for
small images but can take several seconds for larger im-
ages or more complex formats and operations. Video
and audio processing like decoding, encoding or filtering
of multimedia content can take a lot more CPU time. In
the worst case keeping the event loop busy almost all the
time with just an occasional event slipping through. Of-
ten resulting in a "not yet dead but quite laggy" applica-
tion.

To reliably identify those situations the developer has
to understand what actually happens. For example he
has to understand that JPEG decoding is CPU intensive
and takes longer with larger images. Libraries can be
used to avoid writing a decoder but developers have to
understand how long a function can take. Either by un-
derstanding the task itself or by profiling.

Again, to keep these CPU intensive functions from
"blocking" the event loop they have to be moved to their
own threads. Preferably these threads should have a
lower priority than the event loop thread. Event han-
dlers can then spawn these threads and use event ob-
jects [19] or eventfds [20] in the event loop to wait for
their completion. Those techniques are nothing new and
were already used with Windows 98 [21].

Programming in continuation passing style
Event loops heavily impact the style the code has to be
written in. Usually code is written in a straightforward
way, step for step. Disregarding what exactly the code
does or how long it takes to execute (the main advantage
of encapsulation).

void on_click() {
void* data = read(filename);
void* result = do_calculation(data);
write(filename, result);
show("Done!");

}

With event loops it becomes important if code can
block and how long a CPU intensive calculation can run.

If the read() and write() functions in the above ex-
ample can block we need to restructure the code. Each
time we can possibly block we have to return to the
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event loop and give it some object it can monitor. The
waiting has to done by the event loop. As soon as the
event loop sees that this object is readable or writable
we have to continue with our code in another event han-
dler.

cont_t on_click() {
event_t read_done = read_async(filename);
return (cont_t){

.when = read_done,

.call = on_data_ready
};

}

cont_t on_data_ready(void* data) {
void* result = do_calculation(data);
return (cont_t){

.when = write_async(filename, result),

.call = on_write_done
};

}

cont_t on_write_done() {
show("Done!");

}

In this C style pseudocode each event handler returns
a cont_t struct that tells the event loop which event
handler (.call member) should be called on which
event (.when member). Instead of the blocking read()

and write() functions we also need asynchronous ver-
sions of these functions that return an event (an file de-
scriptor or HANDLE). The event loop then monitors these
events and calls the event handlers when triggered.

While this now works nice with event loops every
blocking function call splits the code into one more
event handler. And for complex processes such an event
handler chain can get quite long. Making simple code
harder to read.

node.js uses this approach. There inline function liter-
als and closures mitigate the problem a bit:

function on_click() {
fs.readFile(filename, function(err, data){

var result = do_calculation(data);
fs.writeFile(filename, result,

function(err){
show("Done!");

});
});

}

All in all event loops force the programmer to explic-
itly handle when code can continue. Also all the data an
event handler needs has to be stored and passed explic-
itly. Formerly this data would just be kept on the stack.

In the context of programming languages and inter-
preters this programming style is known as "continu-
ation passing style". Each function returns what needs
to be done next (a "continuation"). In that context the

event loop corresponds to the trampoline that executes
the continuations as soon as possible.

This is quite a different style of thinking and can get
complicated. To simplify code some system employ
light-weight user level threads (e.g. POSIX ucontext.h).
The system then provides functions that instead of
blocking hand control back to the event loop. And the
event loop resumes the user level threads when new da-
ta is available for them. Then the programmer can write
code more or less in the same style as before. But how
much this then differs from actually using threads di-
rectly depends on the platform, used libraries and the
time spend to optimize the system (e.g. user level
threads stack size).

Continuation passing style is usually perceived as a
disadvantage of event loops. But depending on the pro-
ject and problem the explicit state and causality han-
dling can offer advantages.

The explicit state management makes it rather easy
to optimize servers for minimal client state. All state a
client needs can be put into one data structure (e.g. a
simple C struct) which can be optimized to only contain
necessary data. This way a server can scale to very high
client counts.

The explicit handling of events from different sources
also makes prioritization simple. Each time the event
loop is notified from the system that something has hap-
pened it simply calls the important event handlers first.
It's also possible to defers low priority events until no
high priority events are reported.

For example a server can accept new connections only
when all established connections are already served. The
event loop first calls all event handlers that receive, send
or process data from established connections that are
ready for I/O. It then would usually call the event han-
dlers that accept new connections. But instead these
events are left unhandled and the event loop again polls
for new events. If new data for established connections
is ready we do the same as before (handle and poll
again). But if the event loop reports no data for estab-
lished connections we then call the event handlers to ac-
cept new connections. This scheme makes sure that a
server only establishes new connections when it still has
capacity to do so. If not it will serve already connect-
ed clients at its maximum capacity and new connections
time out.
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A single threaded event loop can only use one CPU. Even
when all event handlers are pretty fast the sheer number
of events on a high-load server can make the event loop
CPU bound instead of I/O bound. So high performance
servers try to use multiple CPU cores for their event
loops.

A common approach is to create one event loop per
core and have some kind of load balancer distribute
work to the individual event loops. This can use all avail-
able cores but allows to keep each event loop single
threaded and avoids thread synchronization issues. But
the approach requires some kind of request level par-
allelism the load balancer can use to easily distribute
the workload. That usually is the case in server applica-
tions where many (mostly unrelated) requests need to
be processed.

GUI applications don't offer easy request level paral-
lelism since most event handlers need to modify com-
plex global state (e.g. the DOM tree of a website). On the
other hand GUI applications seldomly receive so many
events that they become CPU bound. Instead they most-
ly suffer from long running event handlers that need to
be manually handled in extra threads anyway. Either be-
cause an API can't be integrated into the event loop (e.g.
OpenGL) or because of actual CPU intensive work.

Details of epoll [6] open up ways to distribute event han-
dlers of even a single event loop over multiple threads.
We explore that alley a bit in order to see what a single
multithreaded event loop might look like. This chapter
focuses only on epoll and the Linux kernel. Platform in-
dependence would easily exceed the scope of this paper.

epoll basically is a central list of file descriptors (sock-
ets, timer fds, event fds, etc.) that are monitored for
changes (new data ready to be read, etc.). Multiple
threads can wait on a single epoll instance. When an
event occurs one of the waiting threads is notified. This
effectively distributes events over all waiting threads.
Given at least one thread per core and enough CPU
heavy events the event handlers can actually use all
available CPU cores to do their work. Utilizing the full
CPU.

This distribution however results in two problems:

• Since we're working with threads we have to avoid
race conditions, lost updates and deadlocks.

• The second problem is a bit more subtle: We have
to make sure that what the programmer thinks
about as "one event" will actually only be
processed by one and only one event handler.

Keeping "one event" one event
The second problem is best clarified with an example:

We have an HTTP server with 4 threads that uses one
central epoll instance to handle many TCP network con-
nections to clients. epoll notifies one thread as soon as
new data on a connection is ready. Say we received 150
bytes on that connection. Now the notified thread exe-
cutes the event handler that reads the pending data in-
to a small buffer reserved for that connection and does
some processing.

While that event handler is running another data
packet arrives on that connection. Say an additional 300
bytes. New data is available and since the original thread
is still busy it's possible that another thread will be noti-
fied. So the second thread executes the same event han-
dler on the same connection. This is a typical race condi-
tion. We don't know how much data the first thread al-
ready read and if it already updated the number of bytes
in the client buffer. So the second thread might over-
write the buffer data of the first thread with newer re-
ceived data.

To avoid that we have to make sure that an event on
a connection is fired only once and then disabled un-
til the event handler is done. Fortunately epoll offers
this mechanism: The EPOLLONESHOT flag (described in
the man page). When telling epoll to monitor a file de-
scriptor for changes this flag can be set. It then makes
sure that only one event is triggered on that file descrip-
tor. After the event is triggered the user has to rearm it
(e.g. at the end of the event handler) to receive anoth-
er event. With EPOLLONESHOT we can make sure that the
first thread can read all data and do it's processing with-
out a second thread working on the same connection.

Avoid race conditions in general
One big advantage of a single threaded event loop is that
state can be manipulated without thinking about any
synchronization. We lost that advantage so care has to
be taken when working with state.

Multithreaded event loops4.

Multithreading one event loop5.
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For global state (e.g. number of connected clients, to-
tal bytes served, etc.) atomic instructions and structures
provide a way to avoid race conditions and deadlocks.
Normal locking and synchronization primitives like mu-
texes or semaphors won't work because they would
block the event handlers execution (and the entire
thread). Instead Linux offers "eventfds" [20]. These are
file descriptors that can be used as very lightweight sem-
aphors. These eventfds can be integrated into the event
loop and can be used for locking and signaling.

But since we don't know in which order epoll will trig-
ger event handlers we can't avoid deadlocks by sorting
the locks. This means that such locking can not be nest-
ed without risking deadlocks. So a locked list must not
contain objects that require locking. Otherwise it's just a
mater of time until the entire server deadlocks. So atom-
ic operations should be preferred over locking whenever
possible.

The same limitations also apply to state that is used
to coordinate multiple clients, e.g. a queue where one
client pushes data and many other clients read that data.
But for some situations there are simple (but slower) al-
ternatives to complex atomic structures. For example
UNIX domain sockets of type SOCK_DGRAM or
SOCK_SEQPACKET can be used as simple message
queues.

In case of server applications most state is usually per
request or connection. Global state is often handled by
databases or key-value stores. Since event loops force
the programmer to write code in continuation passing
style even single threaded servers explicitly handle per
connection state. When a new connection is established
they allocate a structure containing all relevant data for
the connection (buffer space, temporary variables, re-
quest state, what to do next, etc.).

A multithreaded event loop profits from this explicit
"infrastructure". If we can ensure that this state data
structure is only accessed by one event handler at a time
most synchronization can be avoided. The easiest way
is to ensure that for each state data structure only one
event handler at a time can fire. So a request can either
wait for new data from the network connection or from
the database. But it can't wait for both. Otherwise the
event handlers for these events might be called in differ-
ent threads at the same time.

Worth the effort?
Handling of global state is complex. Atomic data struc-
tures require careful thinking in more complex scenar-
ios. And this takes away a lot of the simplicity of event
loops.

For server applications there usually is easy request
level parallelism to exploit. Distributing load over mul-
tiple servers would require a load balancer anyway. And
that load balancer can also be used to distribute work
over multiple CPU cores. Threaded event loops would
only add complexity to the entire system with no appar-
ent advantage. So in these situations it's probably not
worth the effort.

For GUI applications it depends heavily on the used
environment and libraries. On windows many data
structures of the UI are implicitly thread local. Distrib-
ution of the event handlers is very problematic in this
case.

Even when designing a new GUI system multithread-
ing would probably not be worth the effort. GUIs usually
require a tree or graph based content model which
would be difficult to handle in a multithreaded environ-
ment. It's probably easier and a better investment of
time and complexity to use a single threaded event loop
and move CPU heavy tasks into a worker thread pool.
These worker threads can then communicate with the
event loop via eventfds or other means.

Event loops offer a simple way to implement coordi-
nation of complex applications. That's their main ad-
vantage. Coordination usually isn't a CPU heavy task so
it doesn't profit from parallelization. By putting event
loops in a multithreaded context we're complicating co-
ordination of events enormously but gain little by it.

Event loops (try to) centralize the high level coordina-
tion of a program (the programs "causality" so to speak).
This opens up an interesting question: Can every ap-
plication be divided into "coordinator" and "worker"
parts? Or is there some CPU intensive high-level coordi-
nation that has to be done while crunching numbers? It
might be that in general multithreading (parallelism) is
a pattern to handle "worker" parts (number crunching)

Conclusion6.

Further ideas7.
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while event loops (or event multiplexing) is a pattern to
handle "coordinator" parts.

It would also be interesting if such a division is hin-
dered by technical problems (e.g. APIs) or if its just a
matter of programming and thinking in a different way.
Would that make development of complex applications
easier? Could it even be a natural way to avoid many
high-level synchronization bugs?
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